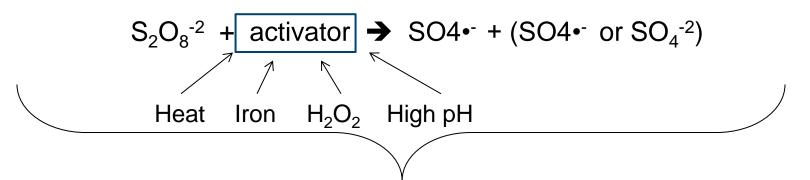
Addressing Residual LNAPL Using Klozur Persulfate

John Valkenburg, MS, PE Senior Engineer Technical Sales Manager

SOIL & GROUNDWATER REMEDIATION


Klozur[®] Persulfate Chemistry

Klozur[®] Activated Persulfate

produces a radical which is more powerful and kinetically fast

FMC always recommends using an activator

proper activation method is based on contaminant, site lithology, and hydrogeology

Purchase of FMC's Klozur[®] Persulfate includes rights to practice the inventions covered by the patents in the purchase price of the product.

Sustainable Solution: Utilizes Hydroelectric Power

Determination of Klozur® Persulfate Demand

Stoichiometric Demand

- Contaminant demand is based on 2-electron transfer of persulfate anion
 - 45 lbs of persulfate per lb of Benzene
 - 3 lbs of persulfate per lb of PCE

Natural Decomposition Demand

Demand can be dependent upon activation chemistry

Soil Oxidant Demand (SOD)

- SOD arises from reactions with naturally occurring soil organics and reduced metals
- Average SOD = 1 g persulfate / kg soil, but will be site dependent
- FMC's Klozur Demand Test (\$600 / soil & gw sample)

Note: It is important to account for SOD, or the oxidant will be under-dosed and will not meet the contaminant demand

Residual LNAPL Considerations

Physical Removal Typically Used First

• ISCO is best for thin, recalcitrant LNAPL Layers ('Residual NAPL')

Poor Characterization Often a Problem

- Good understanding of nature and extent needed
- Long term contaminant rebound

High Dissolved Concentrations May Indicate Residual NAPL

Contaminant	Solubility (20 – 25 C)	1% of solubility	10% of solubility	
	ppm	ppm	ppm	
Benzene	1,790	17.9	179	
Toluene	uene 530 5.3		53	
Naphthalene	30	0.3	3	
TCE	1,000	10	100	
PCE	150	1.5	15	
Carbon Tetrachloride	8	0.08	0.8	
Chlorobenzene	472	4.72	47.2	

Table 1: Several chemical compounds and their solubilities in water, and the concentrations indicative of their presence of NAPLs.

Residual LNAPL & Klozur[®] Persulfate

Contact is Essential

• Klozur is hydrophyllic, aqueous-phase reactions

Klozur Solution Densities

Klozur Persulfate Solution Properties						
Solution wt%	5	10	15	20	25	
Specific Gravity	1.031	1.066	1.104	1.145	1.189	

Methods that Enhance Contact

- Heat activation (improves solubility and increases reactivity)
- H₂O₂ activation (localized heat)
- High pH activation (surface tension, charge)
- Klozur persulfate with surfactants (used by several implementation firms)

Klozur[®] Persulfate Residual LNAPL Cases

Customer & Site	Product & Activation Method	Target	Result
Earth Tech, Edwards AFB, CA (Pilot)	Alkaline activated Klozur with A/S	CVOCs and JP-4 LNAPL	CVOCs and LNAPL oxidized
WSP, Coastal Plains of Florida	Klozur CR and PermeOx Plus	Petroleum LNAPL and dissolved phase plume	LNAPL reduced from 1-3 to < 1 cm, 70% dissolved plume area decrease
MECx, Trento, Italy (Pilot)	Klozur and CHP with recirculation	PAH LNAPL	LNAPL eliminated, dissolved PAHs to < 50 µg/L
MECx, Kentwood, LA	Klozur with low dose H2O2 and ferrous iron	Refined petroleum products (pipeline) LNAPL	0.1 to 1 foot LNAPL eliminated, 70% dissolved TPH decrease
MECx, Dallas/Fort Worth, TX	Klozur with low dose H2O2 and ferrous iron	LNAPL and light HC dissolved phase	LNAPL eliminated, BTEX reduced 95%, MTBE reduced 66%

Residual LNAPL Treatment - Key Data

Distribution

• GW and Soil, horizontal and vertical

Compounds

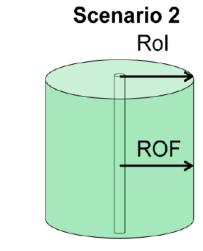
• Much more than just BTEX & SOD

What's the driver?

- LNAPL itself?
- GW concentrations?
- Both or something else?

Klozur[®] Persulfate Dosing Considerations

Target Suitable Fraction of Residual LNAPL Mass


• % Reduction Needed » Goal (Csat or other technical basis)

Identify Injection Approach

- Scenario 1 high concentration injection (20 30 wt%)
- Scenario 2 low concentration injection (< 5 wt%) Scenario 1

Consider Multiple Injections if Required

• More dilute solutions and high concentrations may require

Rol

ROF

John Valkenburg Technical Sales Manager/ Senior Engineer FMC Environmental Solutions Phone: 517.669.5400 John.Valkenburg@fmc.com www.environmental.fmc.com

